

Sulfosalts:

Family of more than 200 naturally occurring, inorganic chalcogenides with complex chemistry and structure.

All semiconducting!

Applications in

- thin film photovoltaics
- thermoelectrics
- phase change memory

Bournonite Mineral (PbCuSbS₃)

Structure of a sulfosalt thin film solar cell

Methods available:

- A. Synthesis and crystal growth
 - Quartz ampoule technology
 - melt (solution) growth, CVT
 - uniaxial hot pressing (co-operation with AIT Seibersdorf)
- B. Thin film deposition cluster sputtering plant for metal layer, sulfosalt layer and TCO deposition
- C. Scanning electron microscope with
 - EDX
 - EBSD
 - μ-XRF
 - CL
 - EBIC
 - μ-conductivity
- D. Chemical analysis:
 - XRF
 - EMPA

E. Structural analysis

- X-ray single crystal diffractometer
- X-ray powder diffractometer
- X-ray powder diffractometer with high temperature chamber

F. Physical properties

- Potential-Seebeck microprobe
- Photoacoustic spectroscopy
- UV/Vis/NIR spectrometer
- I-V characteristics (sun simulator)
- conductivity measurements(2point- and 4point-probe)

Results:

4 new sulfosalt phases synthesized

15 new sulfosalt structures resolved

Sulfosalt thin film solar cell realisation

TCO: n-type ZnO:AL and ITO layers with high transmission and electrical conductivity realised

Sulfosalt absorber layers: work on 4 ternary systems and 2 quaternary systems; correlation of deposition parameters and physical properties; first proofs of concept for different material systems

Metallic back contact: parameters for Modeposition

Thermoelectric properties

Seebeck coefficients > 400 μ V/K Electrical conductivities > 70 S/cm

Team:

Dipl.-Min. Astrid Pachler

DI Johannes Stöllinger

Dr. Dan Topa

Dr. Andreas Stadler

TA Gerhard Aigner

Head: Prof. Dr. Herbert Dittrich

Industrial Co-operation Partners:

