

PV technology development

Achievements, challenges and opportunities

The Implementation Plan for the Strategic Research Agenda

Wim Sinke

on behalf of Working Group 3: Science, Technology & Applications

4th General Assembly Vienna, 19 June 2009

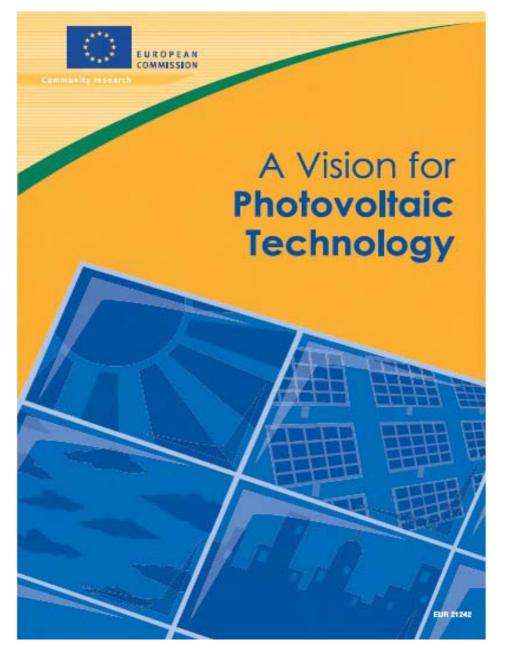
Contents

From Strategic Research Agenda to Implementation Plan

PV technology development:

where are we & where do we want to get?

Research in support of the Solar Europe Initiative and beyond – the Implementation Plan:

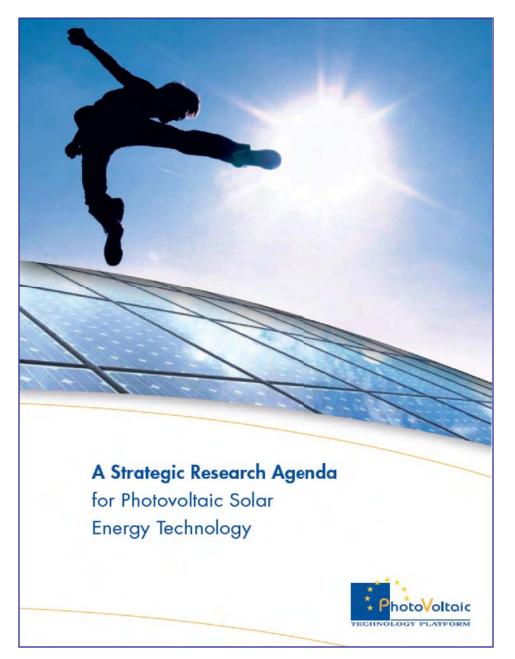

categories

budgets

instruments

interactions

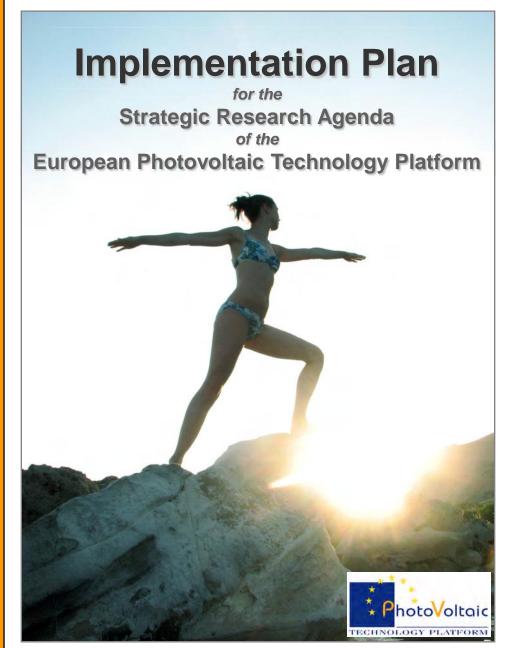
Outlook



R&D crucial for realisation of the Vision

Addresses EU ánd member states

Need for a common document describing R&D fields, topics and priorities


→ Strategic Research Agenda

Describes *what* needs to be done

www.eupvplatform.org

Describes *how*the SRA findings and recommendations can be put into practice

Photo credit:: www.photocase.de © shadowtricks (Tim Rodenbröker)

Contents

From Strategic Research Agenda to Implementation Plan

PV technology development:

where are we & where do we want to get?

Research in support of the Solar Europe Initiative and beyond – the Implementation Plan:

categories

budgets

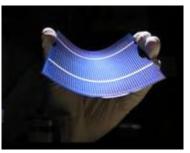
instruments

interactions

Outlook

PV technology development

status and targets



Rounded, indicative figures	1980	2009	2020	2030	Long term potential
Typical turn-key system price (2009 €/Wp)	>30	4 (range 3 ~ 7)	2 (range <1.5 ~ 3)	<1	0.5
Typical electricity generation costs Southern Europe (2009 €/kWh)	>2	0.25	0.12 (<0.10 ~ 0.18)	<0.06	0.03
Typical commercial <i>flat- plate</i> module efficiencies	up to 8%	up to 15%	Up to 20%	up to 25%	up to 40%
Typical commercial concentrator module efficiencies	(~10%)	up to 25%	Up to 30%	up to 40%	up to 60%
Typical system energy pay-back time Southern Europe (yrs)	>10	2	1	0.5	0.25

Wafer-based crystalline silicon

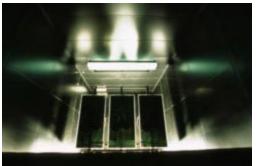
½ century of manufacturing experience high performance typical module efficiency range:

- 12 ~ 20% (now)
- 18 ~ 22% (longer term)

Thin-film silicon

low-cost potential and new application possibilities new silicon materials introduced typical module efficiency range:

- 6 ~ 9% (now)
- 10 ~ 15% (longer term)


PV technology development

status and potential

Cadmium telluride

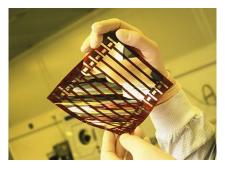
low-cost potential take-back and recycling systems implemented typical module efficiency range:

- 9 ~ 11% (now)
- 12 ~ 15% (longer term)

PV technology development

status and potential

Copper-indium/galliumselenide/sulphide (CIGSS)

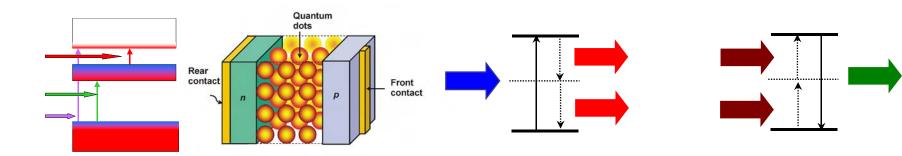


high performance potential material flexibility typical module efficiency range:

- 11 ~ 13% (now)
- 14 ~ 18% (longer term)

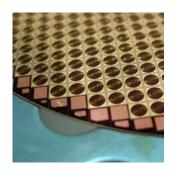
Emerging and novel technologies

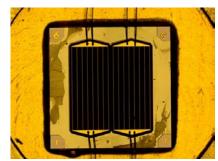
polymer PV


dye PV

printed CIGS

current emerging technologies primarily candidates for very low cost or new application forms (i.e. not for very high performance) for some, first applications may appear in niche markets


Emerging and novel technologies


wide variety of new conversion principles and device concepts mostly aimed at very high efficiencies ("full spectrum utilisation") very important in view of long term potential of PV (model systems or nuclei for "disruptive" technologies)

Concentrator technologies

application form of choice for high cost/m², super-high efficiency cells

EU world record cell efficiency 41% (Fraunhofer ISE) 23% AC *system* efficiency demonstrated only concrete way to system efficiencies >30% as yet

PV technology development

status and potential - selection

BoS-components and PV systems

Now:

overall system performance -yield, reliability and availability-(even) further improved

multifunctionality of components and systems gaining interest

Future:

technology and concepts for very high penetration levels dedicated products (e.g. BIPV)

Contents

From Strategic Research Agenda to Implementation Plan

PV technology development:

where are we & where do we want to get?

Research in support of the Solar Europe Initiative and beyond – the Implementation Plan:

categories

budgets

instruments

interactions

Outlook

Contents

Introduction: context and overall challenges
Research landscape: R&D strategies worldwide
SRA research needs classified and quantified
Instruments for funding
Knowledge from (and to) other sectors
Education and training

Use SRA as basis, but re-structure topics (i.e., not along technology lines):

Enhancing Performance (devices and systems)
Improving Manufacturability & Reducing Cost
Promoting Sustainability
Addressing Applicability

Bottom-up quantification and characterisation of R&D needs in terms of:

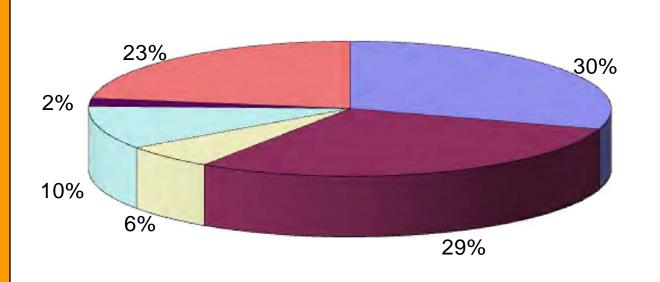
Project type (basic, applied, industrial)

Public/private funding shares (100/0, 75/25, 50/50, 25/75, "12.5/87.5")

Funding level (<20, 20-50, 50-100, >100 M€)

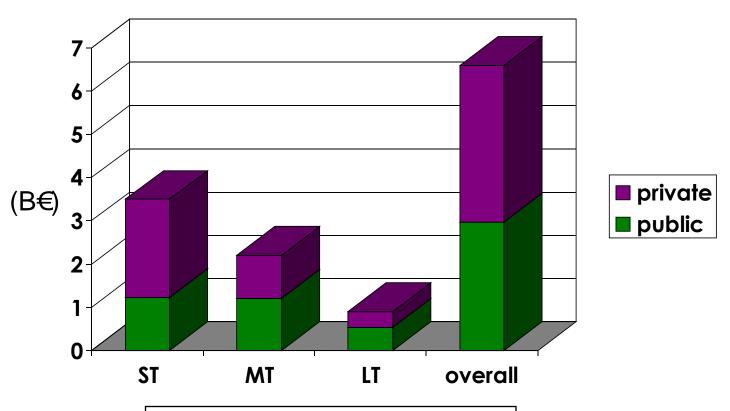
Timescale for exploitation (ST, MT, LT)

Example of bottom-up quantification and characterisation


Technology Area	Action	Project Type	Funding Public / Private	Funding Level	Timescale for exploitation			
Advanced device concepts								
c-Si	 Back-contact cell structures Heterojunctions for emitters and passivation Low recombination contacts New device structures 	Industrial	12.5/87.5	300 - 400	Short			
All thin films	 Implementation of advanced optical concepts and device structures into industrial processes Novel contact patterns Novel series connection schemes and (laser) patterning methods Patterning for BIPV applications 	Applied	25/75	100	Short			
Concentrators	Metamorphic triple cells Optical concepts for very high concentration, increased acceptance angle	Basic	75/25	20-50	Short			

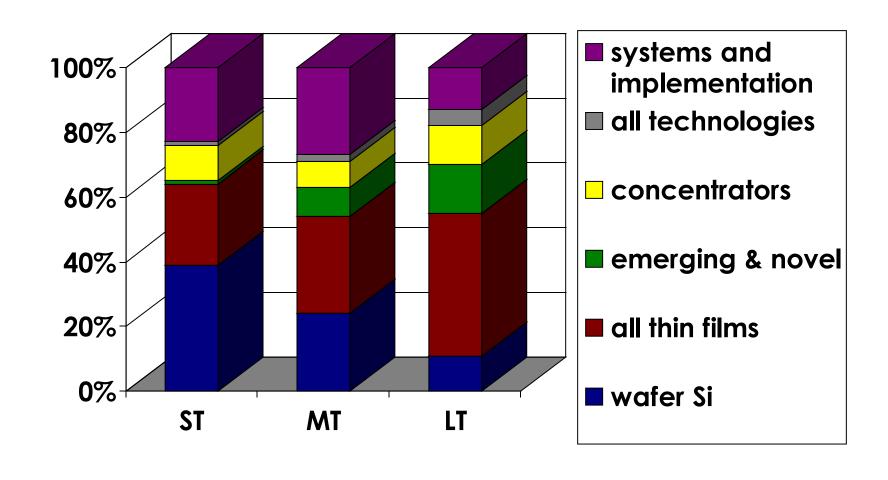
Budget shares 5 year period

Overall distribution of budget


(total = 6.6 B€)

C-Si
 All thin films
 Emerging and novel technologies
 Concentrators
 All technologies
 Systems and implementation

Budget shares 5 year period



Enhancing performance: 55% Improving manufacturability: 35% Promoting sustainability: 5% Addressing applicability: 5%

Instruments for funding

New stage of PV development and new challenges call for new approaches

Make optimum use of R&D throughout EU

Coherent implementation of R&D policies (EU & MS)

Further shaping of FP7/8, EIT/KICs, (E)ERA, etc., towards an efficient and effective set of instruments

Interaction with other sectors

Joint efforts required or preferred:

grid integration building integration sustainability

. . .

Interaction and joint priority setting:

other (EU and other) Technology Platforms

financial sector

E-sector (grid operators, regulators)

education

. . .

Contents

From Strategic Research Agenda to Implementation Plan

PV technology development:

where are we & where do we want to get?

Research in support of the Solar Europe Initiative and beyond – the Implementation Plan:

categories

budgets

instruments

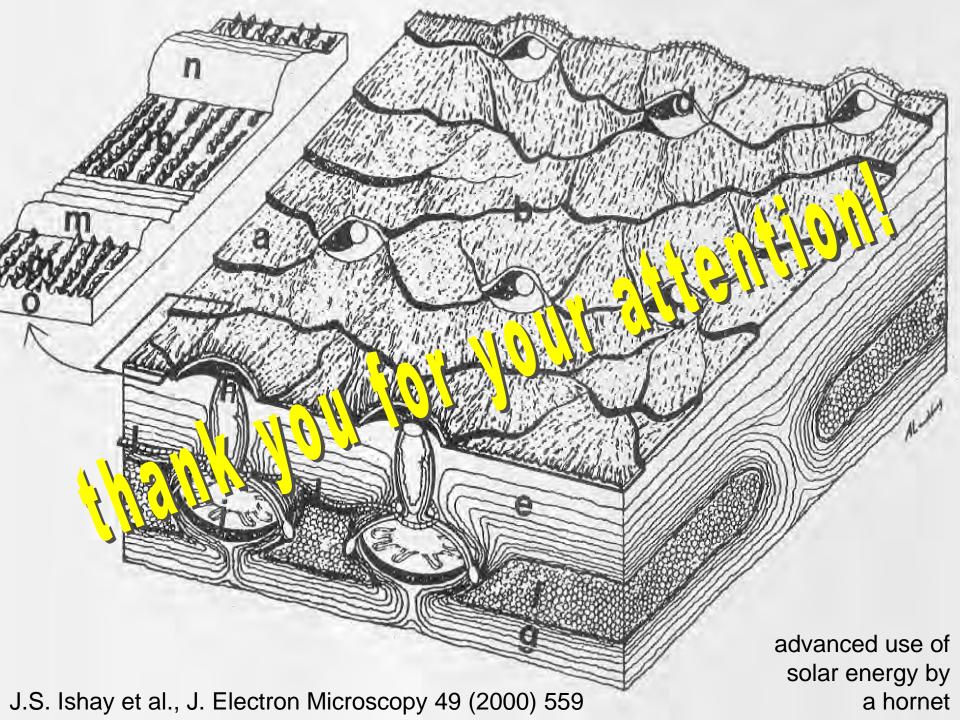
interactions

Outlook

Outlook

The Solar Europe Initiative provides framework for highly ambitious development

EU PV TP and EPIA will face this challenge together


2020 is a only a first step

SRA and IP now (almost) ready to support reaching 2020 targets and (far) beyond

Working Group 3 members:

thank you for your contributions and very pleasant cooperation!

