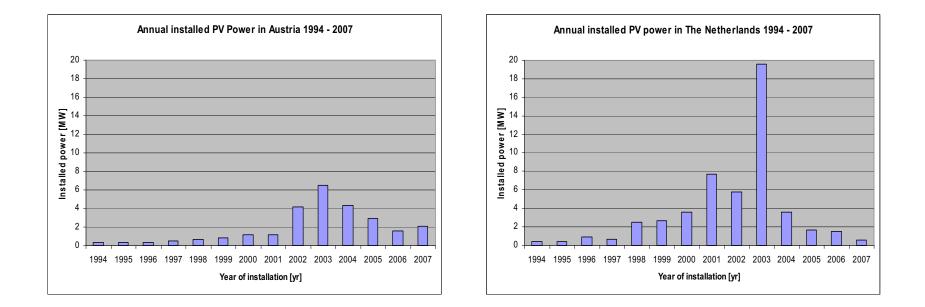
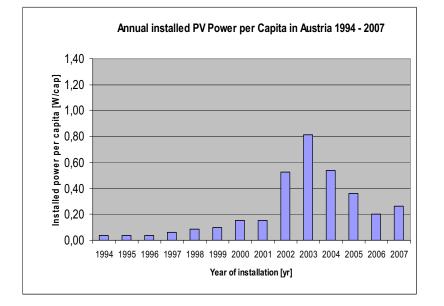


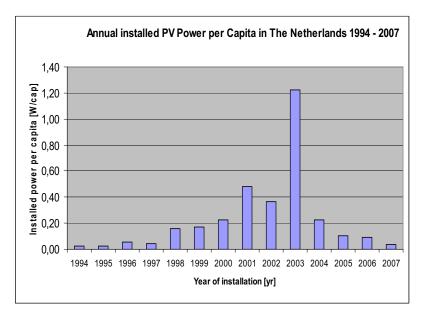
Joining Objectives for Sustainable World Energy Solutions

Impulses from Research for Industrial Development in the Netherlands

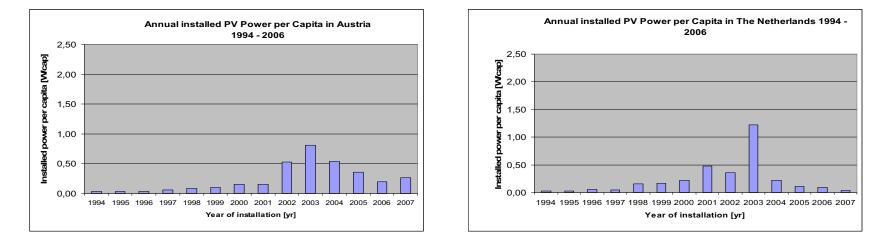

Job Swens J-OB

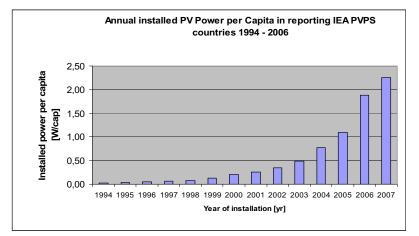

Impulses from Research for Industrial Development in the Netherlands

11 September 2008



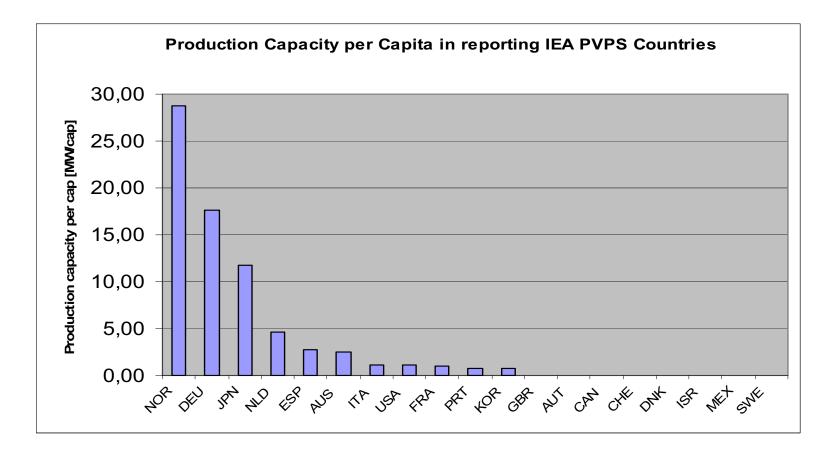
Cumulative installed power: 3,4 W/cap.


No. 6 on world ranking list



Cumulative installed power: 3,3 W/cap.

No. 7 on world ranking list



Impulses from Research for Industrial Development in the Netherlands

Content

- Dutch policies towards PV
- Implementation support
- RTD support
- Development of the Dutch PV Industry
- Conclusions

Dutch Policies towards PV

• 1982 - 2003:

PV is seen as an important RE option;

support slowly broadened from pure RTD to RTD, Demonstration and implementation

• 2003 -:

Kyoto and EU lead to a priority for competitive solutions no support for PV implementation, focus on biomass and wind PV RTD supported to enable long term contribution

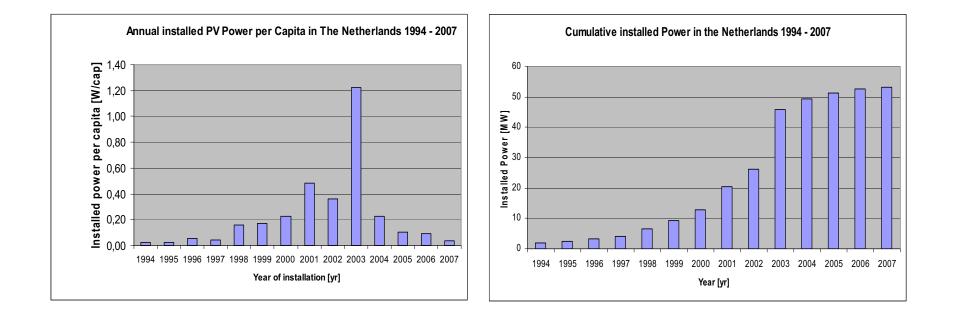
• 2008 -:

Implementation support to complete product chain

PV implemetation support schemes - 1

Historical overview

- 1997 2000: NOZ PV : GO tender programme, total budget: 20 M€
- 1998 2003: MAP (Environmental Action Plan): investment subsidies, total budget 250 M€ for RE and EE
- 2001 2003: EPR (Energy Premuim Regulation): refund of € 3,50 - € 5,00 / W
- 2006: Net metering: up to 3000 kWh / yr (= 3 - 4 kW system), households only


Relation between market and instruments

Annual Dutch market

2000:	NOZ-PV:GO + MAP:	3,6 MW
2001:	MAP + EPR:	7,7 MW
2002:	MAP + EPR:	5,8 MW
2003:	einde EPR en MAP:	19,6 MW
2004:		3,2 MW
2005:		1,7 MW
2006:	Net metering:	1,5 MW
2007:	Net metering:	0,6 MW

Dutch PV market 1994 - 2007

PV installed in the Netherlands

Installed power (dec 2007):

- 53,3 MW
- 3,3 W/cap. (no. 7 in the world)
- Mostly small grid connected systems (0,4 0,6 kW)
- Large scale project in urban area's: Nieuwland (1,2 MW), HAL (-> 5 MW)
- Large scale roof-projects: Floriade (2,3 MW), Blijdorp (0,5 MW)

PV applications in the Netherlands

BMVIT PV Tagung 2008

Impulses from Research for Industrial Development in the Netherlands

11 September 2008

PV RTD support mechanisms

Historical overview

1984 – 2000: NOZ – PV (Dutch Research Progr. Solar energy – PV):

- RTD -> RTD + Demonstration -> RTD + Demo + Market Introduction
- from 5,5 M€/yr (1986) to 20 M€/yr (2000)

1996 – 2003: EET (Economy, Ecology, Technology):

- pre-competitive industrial research
- average PV: 5 M€ / yr

PV Support mechanisms

Historical overview (continued)

2001 – 2004: DEN (Renewable Energy for the Netherlands):

- RTD + Feasibility + Knowledge Transfer
- average PV: 2,5 M€ / yr

2002 – . . . : NEO (New Energy Research):

- energy inventions
- average PV: 200 k€

PV Support mechanisms

Historical overview (continued)

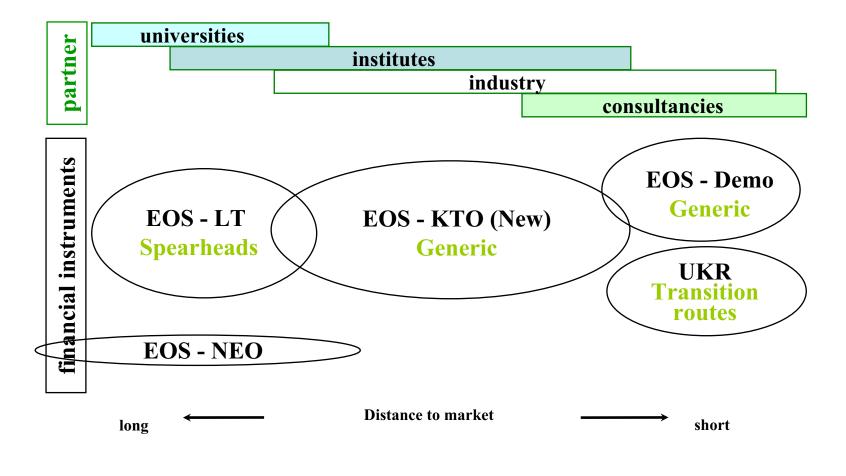
2005 – . . .: EOS (Energy Research Strategy):

- RTD and demonstration
- average for PV: 6 9 M€ / yr

EOS Programme - approach

New approach in Energy RTD Support:

- One approach for energy research
- Coherent set of instruments
- Selection of spearheads in close consultation with market players
- Focus on areas of importance for future Dutch energy supply
- Division over strong area's and import area's


EOS Programme - characteristics

Programme aspects:

- budget: 100 M€ / yr
- 2 calls per year per sub-programme
- project selection by a appointed commission
- share of PV 9 % (2007: 9,4 M€)

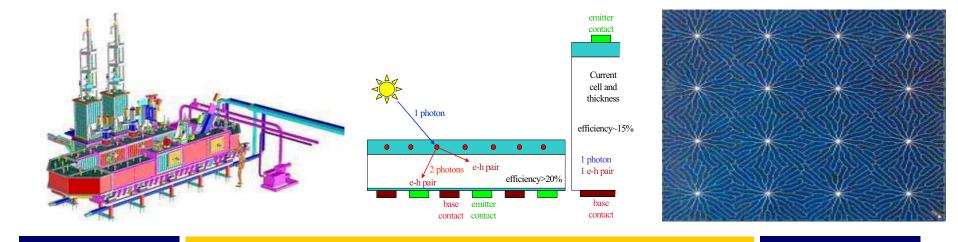
EOS Programme - overview

EOS Programme – focal area's

- NEO: New Energy Research, focussing on new, unconventional ideas. Mainly intended for inventors.
- LT: Long Term, focussing on research on technologies, with impact between 2020 and 2050.
- KTO: Short Term Research, focussing on transfer of research results to industry,
- Demo: Demonstration, focussing on testing and demonstrating new applications in a realistic user environment.
- Transition UKR: Transition Unique Opportunities Scheme, focussing on the application of renewables in general in unique situations.

EOS Programme – KTO

Characteristics of the ES sub-programme:

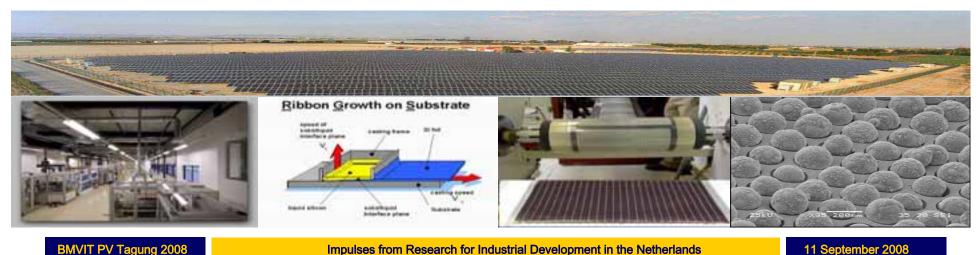

- Proposal to be submitted by industrial entity
- Collaboration with at least 1 industrial or 1 scientific partner
- More than 1 industrial partner is preferred
- Funding for up to 25% of the development cost and 50% of the R&D cost
- Extra 10% funding when one of the partners is a scientific partner

Dutch PV RTD (main players)

- ECN
- University of Utrecht
- University of Eindhoven
 FOM Amolf
- University of Groningen

- Technical University of Delft
- TNO

Impulses from Research for Industrial Development in the Netherlands


11 September 2008

Dutch PV Industry (main players)

- Solland Solar
- Scheuten Solar
- NUON Heliantos
- Ubbink
- RGS Development
- APA
- Econcern

- Si cell production (2007: >40 MW)
- CIS cell development, production in 2009
- thin film Si cell development, production 2009
- Si module production (2007: > 5,6 MW)
- Si wafer production development
- CIS cell development, production in 2009
- Projects, mounting systems

Solland Solar

Started in 2005 <u>on</u> the Dutch / German boarder Collaboration with ECN and University Utrecht Cristaline Si; back-side-contact; PUM - cells

- 2005: Start production, production capacity: 20 MW/yr; 50 fte; ca 5 M€ turn over.
- 2006: 2^{de} line, production capacity 60 MW/yr; 90 fte; ca 50 M€ turn over.
- 2010: production capacity: 500 MW;
 > 500 fte; ca 1 miljard € omzet.

AkzoNobel

Research strated in 1997; Construction Pilot line in 2005 Collaboration with University Delft and University Utrecht Thin-film amorf Si; roll–to–roll process; η: 9% in 2010

- 2006: η (cell) = 5-6%, 30 cm wide, capacity of 0,5-1 MWp/yr capacity
- 2007/2008: Tandem cell on 1.20 m wide foiles; pilot capacity of 5 MW/yr
- 2009 -2013 : η = 9% cell, 1.20 m wide, capacity of ca.
 90 MW/yr

Scheuten Solar

- Nieuwe CIS process in NL
- Collaboration with University Utrecht, ECN, TNO / Eindhoven
- Sphere shaped CIS cells on metal foil, new sinter processes
- 2006: $\eta = 8\%$ for modules
- 2007: pilot line (10 MW/yr), η = 8% rendement, 30 fte
- 2008: capacity of 40MW/yr, 50 fte,
- 2009: production capacity: 290 MW/yr, 275 fte,
- 2011: production capacity: 590 MW/yr, 550 fte
- 2012: production line of 1 GW/yr, 1275 fte, production cost € 48/m2, η = 10-14%, 0,55 €/W module cost prise.

Ubbink Solar

Strated March 2006 in Doesburg

Dutch / German company

Module production based on Solland Solar cells

- 2006: Start production, production capcity: 5 MWp
- 2010: production capcity 200 MWp

Conclusions - 1

- Implementation in the Netherlands has dropped dramatically since 2003, but is still in the top ten W/cap. list
- This drop has led to a number of bankrupcies amonst installers
- The drop was caused by an incoherent and badly structured support programme

Conclusions - 2

- The Netherlands still hold a very strong international position in PV RTD
- This position was created by carefull programming in close consultation with stakeholders
- Based on the strong Dutch RTD position, a Dutch PV industry has grown against the absence of a national market

Conclusions - 3

An effective RTD support scheme has the following characteristics:

- covering as aspects of the innovation chain:
 - new idea's,
 - fundamental R&D,
 - applied R&D,
 - knowledge transfer,
 - demonstration and
 - production improvement
- taking into account the national expertise

Thank you for your attention

More information: J-OB Job Swens tel: + 31 30 2393744 e-m: job.swens@j-ob

E THE