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Objectives in Financial IT-Security

 -Protect (digital) assets from outsiders AND insiders
- Protect private information of customers form outsiders AND insiders
- Comply with legal regulations and state law
- Ensure the availability of banking processes 
- Provide audit trails for all business processes 
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Objectives: System Context Diagram
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Framework
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Framework: First Level Functional Policies

Mandatory Asset Ownership  → drives user authorization process 

Mandatory Data Classification → regulates data access, transmission and
 storage with respect to users, integrity and confidentiality

Mandatory Access Control → regulates authentication and authorization

„Need-to-know, Need-to-do“ → limits authority to required ones

Risk Management and Incident Management → calculates and manages
 risks, prepares for disasters (e.g. duplicate data centers)
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Software

 - Security Sign-offs at various levels of development
-  The importance of backend security
-  Traced delegation vs. perimeter security
-  Penetration Testing
-  No authentication or custom authorization in 
applications
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Software: Secure Delegation Concept

CORBA CSIv2 Mechanism 
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Software: Backend Security in Enterprise Search

Administrative errors will not allow unauthorized access to 
search data because user rights are checked immediately against
ACLs in index. 
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Infrastructure: Principles

 - Strong authentication with smart cards
-  Continuous system management with repository and 
automatic removal 
-  No developer access to production
-  Traced software configuration and installation
-  No interactive access to production systems 
-  No secret credentials over the wire
-  Single Sign On
-  Central User-Authorization System
- Core security services and data on IBM mainframes
- Mandatory protocol changes in firewall zones
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Infrastructure: User-Authorization System
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Infrastructure: Credential Management
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Client-Facing Security: Authentication Race
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Does All This Really Help?

 

Yes, it does. Within limitations and at a high price.

- Input validation is still a problem (XSS, XSRF, inject, overflow)
- Channel based authentication within infrastructure is very static
- Systems in permanent danger of zero-day attacks
- What about Advanced Persistent Threats (Stuxnet and Co.)?
- What about information leaks?
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2. Damage Reducing Systems
a) Fragility 
b) Root Causes
c) Solutions



Fragility: Advanced Persistent Threats 

• You can no longer benefit from your level of security 
being a little bit higher than others. Your absolute 
level counts! (Schneier)

• Attacks on single targets, SCADA systems
• Unheard of resources, skills, money used by attackers
• Attacks built over many years
• Special equipment only available to states used
• Zero-Day-Attacks and Certificates easily bought 
• Insiders used to plant attack code
• Attack code no virus but an application or parts of it.
• Extreme measures to hide attack
• Some security bugs not fixed for years!
• Antivirus companies tell us they cannot detect ATPs

ATPs are a result of the so called „Cyber War“. States trying to attack other states or 
companies. New organizations are built, specialists trained on electronic warefare. How 
many of those will one day become corrupt?
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Fragility : Buffer-Overflow

A program crash is a way into the system! But the real quality problem is 
much deeper: Stick a finger in some code and figure out what you can do 
from there. What functions can you reach from any point in code? 
Who‘s failure is that?

Exception: STATUS_ACCESS_VIOLATION at eip=61616161
eax=00000012 ebx=00000004 ecx=610E3038 edx=00000000 esi=004010AE 
edi=610E21A0
ebp=61616161 esp=0022EF08 
program=D:\kriha\security\bufferoverflow\over.exe, pid 720, thread main
cs=001B ds=0023 es=0023 fs=003B gs=0000 ss=0023
Stack trace:
Frame     Function  Args
  90087 [main] over 720 handle_exceptions: Exception: 
STATUS_ACCESS_VIOLATION
 104452 [main] over 720 handle_exceptions: Error while dumping state 
(probably corrupted stack)

Our „aaaaaaaa..“ input from the keyboard is now the address where the next instruction 
should be read by the CPU. Now we know how to point the CPU to code we placed on 
the stack
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Fragility: Why is the following dangerous?

Get /file/path/to/something/../../../some_critical_resource

Opening some mail attachment of any format

Installing some software application

Selecting a new add-on for your browser

Browsing to some site

Do you really want
To open this 

Attachment?????
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Root Causes: Ambient Authority Everywhere!
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 Root Causes: Designation vs. Authority 

An API like this forces the transfer of all authority from the user to the 
application because it is unclear what file will be opened at runtime. This 
is even more dangerous, if the application is privileged. Wrong arguments 
checking can lead to privilege elevation. The second API does NOT require 
ambient authority!

Open (char* filename, int mode) 

// application needs to transform the symbolic filename into a 
ressource

Open (Filedescriptor fd) 

//  application receives an open resource without the need to 
perform any rights-related operations
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Root Causes: Software Architecture 
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Solutions: Object Capabilities 

Object Capabilities reduce authority in a system: no access without a 
reference. And references combine access right and access method 
(designation and authority). They are a superior way to CONSTRAIN 
effects and are easier to analyze than external permissions. The 
diagram is called „Granovetter-Diagram“ after the well known 
sociologist Granovetter). 
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Solution: Safe Extensions by Inversion of Control

How do we make extensions safe? How do we achieve complicated 
business requirements like multi-tenant abilities? The answer is in 
Inversion-Of-Control architectures combined with strict control over 
references (no global crap for „flexibility“ reasons…) which effectively 
virtualizes the plug-in runtime environment
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Solutions: Authority Reduction Architecture

We need to narrow authority down from the global rights matrix 
(ACLs or Access Control Matrix) of a users rights to the minimum 
authority necessary to exectute a function. Test: try to find how 
many rights you REALLY need to copy a file! 
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Resources
1. Secure languages and Systems: www.erights.org

2. Robust Composition: Mark Miller Thesis, 2006 http://www.erights.org/talks/
thesis/index.html

3. Darpa Browser Architecture (www.combex.com)

4. Authority Reduction, Theoretical Foundations and Decidability: 
www.combex.com (powerbox Concept, secure desktop etc.

5. Safety Analysis: Fred Spiessens, Peter Van Roy, A Practical Formal Model for 
Safety Analysis in Capability Based Systems

6. Kriha/Schmitz, Sichere Systeme, www.kriha.de

7. Cap-talk mailing list

http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.combex.com/
http://www.kriha.de/
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