
IT-Security in Finance and Beyond

Prof. Walter Kriha,

Computer Science and Media Faculty

Stuttgart Media University

May 2013

walter@kriha.de

Principles and Examples from Banking   

GENERALLY ACCESSIBLE



Agenda

1. It-Security in Finance
2. Damage Reducing Systems (not 

networks)



Agenda

1. It-Security in Finance
a) Objectives
b) Framework
c) Software
d) Infrastructure
e) Client Facing Security



4

Objectives in Financial IT-Security

 -Protect (digital) assets from outsiders AND insiders
- Protect private information of customers form outsiders AND insiders
- Comply with legal regulations and state law
- Ensure the availability of banking processes 
- Provide audit trails for all business processes 



5

Objectives: System Context Diagram

Bank

ATMs

Corp.-
Clients

Bloomberg/
Reuters

Credit-
Card Fed..

Customers Subsidies

Employees

Stock
Exchanges

Branches

Home
Offices

Deposits, 
withdrawals, 
statements

Financial 
information, 
research

Payments, 
validations

E-banking, account 
mgt. Phone 
banking, priv. 
banking

Clearing
houses

Realtime 
trading

Checking, 
paper 
processing, 
counter 
services

Extra-nets, 
special services

Laptop 
Security, 
mobile 
systems, VPNs

Application 
access, 
authentication 
and 
authorization, 
bank services

Inter-bank 
exchanges



6

Framework

Security Policy Statement

Functional Policies

Directives Standards Guidelines

technical architecture, operational processess, organizational structures

legal aspectsbusiness aspects

threats

Infrastructure
(SSO, Strong Auth,
Trusted Computing
Base, Config. Mgt.)

Software 
(Sign-Off Process, 

FCRA,
Backend Security, 

Traced
Delegation)

User Authorization 
(Repository, Financial

Roles, 
Rights-Management)

Crypto
(Key Management,

Credentials, protocols)



7

Framework: First Level Functional Policies

Mandatory Asset Ownership  → drives user authorization process 

Mandatory Data Classification → regulates data access, transmission and
 storage with respect to users, integrity and confidentiality

Mandatory Access Control → regulates authentication and authorization

„Need-to-know, Need-to-do“ → limits authority to required ones

Risk Management and Incident Management → calculates and manages
 risks, prepares for disasters (e.g. duplicate data centers)



8

Software

 - Security Sign-offs at various levels of development
-  The importance of backend security
-  Traced delegation vs. perimeter security
-  Penetration Testing
-  No authentication or custom authorization in 
applications



9

Software: Secure Delegation Concept

CORBA CSIv2 Mechanism 

Client
Inter

mediate

Target 

App.

Server 

TTP

SSL 1

Tokens

Authorization Token of C 
(PAC)

Authorization Token of I

Identity Token of C

Identity Credentials or 

Token of I 

security context

Tokens

SSl 2 (mutual)

Every system involved authenticates itself against other tiers and 
flows client tokens. No secrets are shared. Defined routes prevent 
token abuse. Later tiers can verify original requestor and route.



10

Software: Backend Security in Enterprise Search

Administrative errors will not allow unauthorized access to 
search data because user rights are checked immediately against
ACLs in index. 

Backend Security 
Check

End-User
Application

Admin
GUI

User
RightsSome

DB

File
Server

Web
Server

Connector

Connector

Spider Doc.
Processor

Indexer
Query
Server

Index plus
ACLs

Access Control in 
Backends

asfd



11

Infrastructure: Principles

 - Strong authentication with smart cards
-  Continuous system management with repository and 
automatic removal 
-  No developer access to production
-  Traced software configuration and installation
-  No interactive access to production systems 
-  No secret credentials over the wire
-  Single Sign On
-  Central User-Authorization System
- Core security services and data on IBM mainframes
- Mandatory protocol changes in firewall zones



12

Infrastructure: User-Authorization System

Authentication
Service

(Users, roles)

Authorization/Access
Control Service

Log/Audit Service

Log
Strategy

Log
Mechanism

Access
Strategy

Access
Mechanism

Authent.
Strategy

Authent.
Mechanism

Application
Data Owner

Data Requestor

UAS

Apply for role 
access to app. 

Confirm/deny

Record 
rights

Audit
trail

Developer

Define app 
roles/rights

IT-Security

Check process



13

Infrastructure: Credential Management

Rp

Auth.
Server

Registry

App
Server

App
Server

App
Server

App
Server

TAI JAAS

cookie

JAAS

Subject

LTPA 
Key

Admin 
keykey

key

key

key key

key

SSO
PW

Reg.PW

DBDB.PW

Reg.PW

DB.PW

Self 
signed 

cert

Agent Agent

Agent

Agent

Agent
Agent

System
Management

key

key

key

SSO
token

SSO
token

Self 
signed 

cert

Self 
signed 

cert

Request



14

Client-Facing Security: Authentication Race

UID/PW

Lost PW
PIN/TAN

Phishing
I-Tan

MIM
Token 
Generator

RT-MIM
TA-
Author.

List manip.
skimming

?

?

Always just one small step ahead of 
attackers!



15

Does All This Really Help?

 

Yes, it does. Within limitations and at a high price.

- Input validation is still a problem (XSS, XSRF, inject, overflow)
- Channel based authentication within infrastructure is very static
- Systems in permanent danger of zero-day attacks
- What about Advanced Persistent Threats (Stuxnet and Co.)?
- What about information leaks?



Agenda

2. Damage Reducing Systems
a) Fragility 
b) Root Causes
c) Solutions



Fragility: Advanced Persistent Threats 

• You can no longer benefit from your level of security 
being a little bit higher than others. Your absolute 
level counts! (Schneier)

• Attacks on single targets, SCADA systems
• Unheard of resources, skills, money used by attackers
• Attacks built over many years
• Special equipment only available to states used
• Zero-Day-Attacks and Certificates easily bought 
• Insiders used to plant attack code
• Attack code no virus but an application or parts of it.
• Extreme measures to hide attack
• Some security bugs not fixed for years!
• Antivirus companies tell us they cannot detect ATPs

ATPs are a result of the so called „Cyber War“. States trying to attack other states or 
companies. New organizations are built, specialists trained on electronic warefare. How 
many of those will one day become corrupt?



18

Fragility : Buffer-Overflow

A program crash is a way into the system! But the real quality problem is 
much deeper: Stick a finger in some code and figure out what you can do 
from there. What functions can you reach from any point in code? 
Who‘s failure is that?

Exception: STATUS_ACCESS_VIOLATION at eip=61616161
eax=00000012 ebx=00000004 ecx=610E3038 edx=00000000 esi=004010AE 
edi=610E21A0
ebp=61616161 esp=0022EF08 
program=D:\kriha\security\bufferoverflow\over.exe, pid 720, thread main
cs=001B ds=0023 es=0023 fs=003B gs=0000 ss=0023
Stack trace:
Frame     Function  Args
  90087 [main] over 720 handle_exceptions: Exception: 
STATUS_ACCESS_VIOLATION
 104452 [main] over 720 handle_exceptions: Error while dumping state 
(probably corrupted stack)

Our „aaaaaaaa..“ input from the keyboard is now the address where the next instruction 
should be read by the CPU. Now we know how to point the CPU to code we placed on 
the stack



19

Fragility: Why is the following dangerous?

Get /file/path/to/something/../../../some_critical_resource

Opening some mail attachment of any format

Installing some software application

Selecting a new add-on for your browser

Browsing to some site

Do you really want
To open this 

Attachment?????



20

Root Causes: Ambient Authority Everywhere!

Program
Started by

User1
object1

required: 
right1

Object1 Object2

User1 Right1 Right2

User2 Right3 Right1

Reference Monitor

Static 
Rights

Access Control 
Point:

Access Control Matrix:

Uses all possible rights from User1



21

 Root Causes: Designation vs. Authority 

An API like this forces the transfer of all authority from the user to the 
application because it is unclear what file will be opened at runtime. This 
is even more dangerous, if the application is privileged. Wrong arguments 
checking can lead to privilege elevation. The second API does NOT require 
ambient authority!

Open (char* filename, int mode) 

// application needs to transform the symbolic filename into a 
ressource

Open (Filedescriptor fd) 

//  application receives an open resource without the need to 
perform any rights-related operations



22

Root Causes: Software Architecture 

Monolithic Legacy OS

System call Interface

Privileged Utilities

Access Control Lists/API

Driver

Module Module

Driver Driver

Common Filesystem

Global Administrator

Server

(privileged)

Monolithic

Application

Hardware (CPU etc.)

Unsafe Languages

Module

>300 complex 
system calls 
always available

navigable 
filesystem with 
ambient authority

Tons of unsafe 
but privileged 
scripts and 
utilities (setUid)

Unsafe 
extensions

>100.000 drivers 
for windows

Huge TCB, 2 modes only

Covered channels 
(cache, bios, CPU)

Lots of unverified system 
libraries with memory leaks 
etc.

Incomplete quota 
administration (liveness 
problems)

Unsafe languages 
(memory safety)



23

Solutions: Object Capabilities 

Object Capabilities reduce authority in a system: no access without a 
reference. And references combine access right and access method 
(designation and authority). They are a superior way to CONSTRAIN 
effects and are easier to analyze than external permissions. The 
diagram is called „Granovetter-Diagram“ after the well known 
sociologist Granovetter). 

Alice

Bob

CarolBob.Message(CarolRef)

Bob can communicate with Carol 
because he got a reference to her. 
He has NO ambient authority 
enabling a call to Carol

Alice has a reference to 
Bob and Carol and grants 
Bob a reference to Carol



24

Solution: Safe Extensions by Inversion of Control

How do we make extensions safe? How do we achieve complicated 
business requirements like multi-tenant abilities? The answer is in 
Inversion-Of-Control architectures combined with strict control over 
references (no global crap for „flexibility“ reasons…) which effectively 
virtualizes the plug-in runtime environment

Init(Node)

Read()

Write()

Initiate Call 
(IOC 
principle) Use reference 

(object capability 
principle)

Node

NodeNode

Inject 
dependency (DI 
principle)

Node does not allow 
traversal and so plug-in 
cannot access parent 
node

Declare 
dependenc
y



25

Solutions: Authority Reduction Architecture

We need to narrow authority down from the global rights matrix 
(ACLs or Access Control Matrix) of a users rights to the minimum 
authority necessary to exectute a function. Test: try to find how 
many rights you REALLY need to copy a file! 

Per User 
static

Access 
Rights
(ACLs)

Secure
Desktop

Modules Object

Appli
cation

Modules
Modules

Object

Power
Box

Authority container for application with 
dialog option

Designation of object 
and action by User

(trusted path + 
authority by 
designation)

Transformation of 
names to capabilities 
and creation of 
powerbox per 
application

Granular 
distribution of 
authority 
(capabilities) to 
program modules

Granular 
delegation of 
authority to single 
objects



26

Resources
1. Secure languages and Systems: www.erights.org

2. Robust Composition: Mark Miller Thesis, 2006 http://www.erights.org/talks/
thesis/index.html

3. Darpa Browser Architecture (www.combex.com)

4. Authority Reduction, Theoretical Foundations and Decidability: 
www.combex.com (powerbox Concept, secure desktop etc.

5. Safety Analysis: Fred Spiessens, Peter Van Roy, A Practical Formal Model for 
Safety Analysis in Capability Based Systems

6. Kriha/Schmitz, Sichere Systeme, www.kriha.de

7. Cap-talk mailing list

http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.erights.org/talks/thesis/index.html
http://www.combex.com/
http://www.kriha.de/

	Security and Software-Quality
	Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Functional Safety vs. System Security – a Real Difference?
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Example: The designation problem
	Software Defects that threaten Safety
	Microarchitecture: Object Capabilities
	Macro-Architecture: IOC and Virtualization
	Slide 25
	Resources

